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Solidification of aluminium spray-formed billets
Heat flow in the bulk deposit
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Abstract. Transient heat transfer and solidification within an axisymmetric spray-formed aluminium billet are
investigated. The boundary of the solid billet grows outwards, due to deposition from a stream of atomised semi-
solid metal droplets. Within the billet, it is necessary to determine the heat fluxes and, in particular, to determine
the position of the solidus isotherm. Mathematically, one must solve a nonlinear two-dimensional parabolic
initial-boundary-value problem in an irregular and expanding domain.

The problem is formulated within the general framework of billet heat transfer. An effective numerical algorithm
is developed and implemented. Results from the numerical algorithm are used to explore thermal transients in
the start-up phase of billet spray-forming production runs, the phenomenem of steady-state heat flow in the billet
crown and the complex dependence of heat flow on billet-surface movement.
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1. Spray-forming

Cylindrical aluminium-alloy billets of over 1 m in length and with a diameter�300 mm may be
produced by the spray-forming process, taking 20–30 minutes to grow. The process involves
atomisation of liquid metal into a spray of droplets which is propelled rapidly towards a
rotating cylindrical collector. The billet grows on top of the collector through the intermittent
deposition of thin layers of alloy. As the billet grows, it is withdrawn slowly away from the
spray. As well as billets, spray-forming of tubes, thin discs and metal strip are possible; see
[1, 2, 3] for reviews of spray-forming technology and applications.

Solidification of the metal takes place within the spray, [4, 5, 6, 7, 8], as well as following
deposition, [9, 10, 11, 12, 13]. Typically, a metal layer of thickness� 1 mm, corresponding to
� 102 layers of flattened droplets, will be deposited in a pulse lasting � 10�1s. Billet-growth
rates are typically� 1 mm/s; thus, deposition is intermittent. Microstructural features such as
microsegregation, interstitial porosity formation, gas entrapment and grain-size determination,
are believed to be largely determined by heat fluxes close beneath the billet surface, during
and directly after deposition, [14, 15]. Recent studies have used computational fluid-dynamics
techniques to model the impingement of (1 or 2) semi-solid metal droplets on a surface, [16,
17, 18]. Deposition/spreading times are � 10�6 � 10�5s, thermal equilibrium typically takes
� 10�4s. The discrete droplet approach therefore provides excellent insight into microscopic
features of deposition, (e.g. contact, spreading, micropore formation), but is less able to give
insight into sub-surface heat flow that is driven by thin semi-solid layering. In [19], a continuum
model was developed to investigate heat fluxes close beneath the surface during deposition.
The boundary-layer approach adopted in [19] is complementary to both the discrete droplet
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studies [16, 17, 18] and to this paper, which considers solidification of the entire billet of its
growth.

Not all microstructural features of importance are determined by the transient boundary-
layer heat fluxes or on the droplet scale. For example, macrosegregation requires that there is
a significant liquid fraction, persisting within a geometrically significant portion of the billet
over a reasonably long timescale, (i.e. minutes). Secondly, thermal shrinkage defects may
occur on the microscopic scale or over a much larger length-scale, due to macroscopically
non-uniform heat flows. As an example, between the billet and the collector, a significant
amount of shrinkage always occurs, since the first spray which impacts is rapidly chilled by
the collector. Such thermo-physical processes, and the resulting defects, are best understood
through study of solidification on length- and timescales which are appropriate to the billet
size.1 This provides the first motivation for this paper. A second motivation for the paper is
that modelling provides the simplest way to understand billet solidification. Billet production
takes place in an inert atmosphere within a sealed chamber. Billet rotation and clouds of
recirculating metal spray make accurate robust on-line measurement of billet temperature
nearly impossible.

Mathematically, the modelling of bulk billet solidification results in a non-trivial moving-
boundary problem. The first moving boundary is the billet surface. The second moving
boundary of interest is the solidus isotherm within the billet. Billet surface growth has been
studied extensively and the dynamics are now reasonably well understood; (see [19] for
thin layering, see [20, 21, 22, 23] for time-averaged growth dynamics of the bulk billet; see
[24] for growing optimally shaped billets; see [25] for on-line control of billet shape). Billet
solidification on a slow timescale and over a large length-scale has not been studied much, [13,
20]. The problem is a two- or three-dimensional nonlinear parabolic initial-boundary-value
problem, which must be solved in an irregular expanding domain.

An outline of the paper is as follows. In Section 2, the dimensionless equations governing
billet solidification on the billet length-scale and over a slow (billet-growth) timescale are
introduced and their relationship to the boundary-layer equations is discussed. Section 3
outlines significant features of the computational algorithm for solution of the slow-time heat-
flow problem and presents test computations to demonstrate its robustness and reliability. In
Section 4 a number of practical process situations are modelled to gain insight into how to
better control macroscopic heat flows in the billet spray-forming process. The paper concludes
with a brief discussion. Throughout, a hat (i.e.ˆ) is used to denote a dimensional quantity and
bold typeface denotes a vector quantity.

2. Billet solidification

Heat transfer within a solidifying aluminium billet manufactured via the spray-forming process
is modelled by the following dimensionless initial-boundary-value problem, derived in [19,
20]
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Figure 1. Spray-forming geometry: a) billet coordinates, b) spray coordinates.

The model assumes that heat transfer is conduction-dominated. The main physical justifica-
tions for this are: (i) that significant cooling of the spray droplets occurs before impact with the
surface, (ii) that the deposited layers of spray are thin, not usually permitting the accumulation
of a significant liquid fraction, and (iii) that cooling of the billet surface by the atomising
gas is a reasonably effective means of extracting the remaining heat of fusion. Where the
spray-formed deposit is quite thin and is held stationary, not all of these conditions need apply,
(e.g. continuous spraying of a thin metal strip), but in the case of billet spray-forming these
conditions are almost essential for successful production.

The billet forms on the top of a rapidly rotating circular collector plate which is positioned
to intercept the semi-solid metal spray. Coordinates x are fixed to the top of the collector plate
and rotate with the billet and collector. The z-coordinate is chosen to point vertically upwards.
The billet volume at time t is denoted by 
(t) and its boundary by @
(t), (see Figure 1).

The main dependent variable in (1)–(4) is the enthalpy of the alloy, H(x; t);D(H) and
T (H) denote the diffusivity and temperature functions, respectively. Other variables which
appear in (1)–(4) are the temperature of the atomising gas close to the billet surface, Tgas,
the normal surface velocity, vxP , the enthalpy of the semi-solid metal spray at the point
of deposition, Hspray, and the collector temperature, Tcollector . Initial conditions H0(x) are
prescribed at time t = t0 � 0.

The variables in (1)–(4) have been made dimensionless by the scaling of all lengths with
the billet radius R̂, time with the period of rotation of the billet 2�=!̂, and the enthalpy,
diffusivity and temperature functions as follows:

H =
Ĥ � Ĥs

�̂ĉ�T̂
; D(H) =

�̂ĉ

K̂s

D̂(Ĥ); T (H) =
T̂ (Ĥ)� T̂s

�T̂
: (5)

In (5), the solidus and liquidus temperatures, freezing range, solidus enthalpy, liquid and solid-
phase thermal conductivity, density and specific heat capacity, are denoted by T̂s; T̂l, �T̂ , Ĥs,
K̂l, K̂s, �̂ and ĉ, respectively. The latter three quantities are evaluated at a temperature close
to the solidus temperature of the alloy.
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2.1. DIMENSIONLESS GROUPS

The dimensionless groups in (1)–(4) and their typical sizes are

� �
2�Û0

!̂0R̂
� 1; (6)

Pe �
�̂ĉÛ0R̂

K̂s

= OS(1); (7)

Bgas =
ĥgasR̂

K̂s

= OS(1); (8)

Bcollector =
ĥcollectorR̂

K̂s

= OS(1); (9)

whereOS(1) means that the variables are numerically of size 1. The small parameter � denotes
the ratio of the rotation timescale to the withdrawal timescale. The Peclet number Pe is the
ratio of the timescales for conduction, (or solidification), and that for billet growth; Û0 denotes
a typical speed at which the collector/billet is being withdrawn vertically downwards. The two
Biot numbers Bgas and Bcollector model the heat losses to the gas and collector, respectively.
The parameters ĥgas and ĥcollector denote heat transfer coefficients. Although Bgas is included
here as a dimensionless group, it should be understood that ĥgas, (and hence Bgas also), will
vary significantly with position on the billet surface.

2.2. BILLET SURFACE MOVEMENT

Properly considered, the model (1)–(4) is three-dimensional. In terms of coordinates (x; t) the
surface @
(t) may be described by an equation F (x; t) = 0 and the surface normal velocity
vxP is then given by

vxP
= �

@F

@t
jrF j�1:

The following dimensionless evolution equation for F (x; t) is derived in [20, 21].

1
�

@F

@t
(x; t) = [( _mgk0; F ) _m(t)g(r0[x; t])k0(t):r]F (x; t); x 2 @
(t): (10)

In (10)  is a simplified shadowing coefficient, which takes values 0 and 1 according to
whether or not the billet surface is shadowed from the spray. The mass flow rate through
the atomiser is denoted _m(t). The coordinate r0 measures distance perpendicular to the spray
cone axis, and k0 denotes the unit vector in the direction of the spray cone axis at time t, (see
Figure 1b). Spray is distributed only within a radius rs of the spray-cone axis. The mass-flux
distribution within the spray cone is described by the positive function g(r0). These terms are
explained further in [20, 21].

2.2.1. Slow-time heat flow

Although (1)–(4) and (10) are three-dimensional, spray-formed billets are nearly always
observed to be axisymmetric, with respect to the z-axis. Three-dimensional asymmetry is



Solidification of aluminium spray-formed billets 415

usually confined to very thin layers of alloy, (of thickness O(�)), deposited on top of the
billet. During a production run, the rotation of the billet and the oscillation of the spray tend to
“average out” the asymmetric deposition. If only billet growth is considered, then the averaging
procedure may be treated more formally, (see [20, 21]). For a wide class of practically relevant
billet shapes, it is possible to demonstrate that the time-averaged equations for billet growth
provide an o(�) asymptotic approximation to the solution of (10), which remains valid for a
time period � = OS(1). Here � denotes the “slow-time” variable

� = �t: (11)

If synchronization of the spray oscillation and the rotation is avoided, the time-averaged
equations are axisymmetric and the order of approximation is likely to remainO(�) throughout
the process run, (see [20, 21]).

Motivated by the validity and practical utility of the axisymmetric time-averaged bil-
let growth equations, the following time-averaged version of (1)–(4) is considered for the
remainder of this paper.
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These equations are derived formally by a rescaling of the time with � to give the slow-time
variable � and by time-averaging the surface heat fluxes. The surface velocity vxP

is defined
by

vxP
= �

@F0

@�
jrF0j

�1;

where F0(x; �) � F (x; �; t) + O(�) is an axisymmetric (slow-time) approximation to the
solution of (10). Correspondingly, 
(�) denotes the billet volume which is computed by
following the evolution ofF0(x; �). An axisymmetric cylindrical coordinate system x = (r; z)
is defined as in Figure 1, and it is assumed that the solutionH to (12)–(16) is axisymmetric, i.e.
H(x; �) = H(r; z; �). This clearly will only be justified if the boundary and initial conditions
are also assumed axisymmetric.

2.3. INTERPRETATION OF THE SLOW-TIME EQUATIONS

Consideration of (12)–(16) could be motivated by simplicity, by the observation that billets
are axisymmetric or by computational economy, (note that direct numerical solution of (1)–(4)
and (10) would not be feasible). The more mathematical motivation and interpretation of (12)–
(16) is that the slow-time heat-flow equations constitute the outer solution of an asymptotic
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Figure 2. Schematic of the thermal boundary layer in a spray-formed billet; a) location, b) direction of heat flow
in the matching layer.

approximation to H . This is hard to demonstrate rigorously, but may be justified heuristically
as follows.

Unlike the time-averaged billet growth equations, the time-averaged heat-flow equations
cannot provide a uniformly valid O(�) approximation to the temperature field within the
billet. In the first part of this paper, it was indicated [19] that the heat fluxes close underneath
those parts of the billet surface upon which there is significant deposition are governed by a
boundary-layer approximation. In this approximation, OS(1) transients in H can exist on the
fast timescale t and will therefore destroy the uniformity of (12)–(16).

The thickness of this thermal boundary layer is� (�=Pe)1=2. What is interesting is that this
boundary layer is attached to the moving billet surface, (see Figure 2a), and exists effectively
only because of relatively rapid surface growth on the fast timescale. For this reason, as well as
the usual spatial limitations, there are temporal limitations to the validity of the boundary-layer
approximation. These limitations arise since the boundary-layer approximation moves with
the surface normal velocity and, after a sufficiently long time, O(1) changes in the billet shape
local to the boundary-layer coordinates will occur (even if the surface maintains a steady-state
shape). For practical purposes, these limitations are irrelevant, since one does not wish to study
boundary-layer heat flow over an extremely long time period. What the temporal limitations
do suggest, however, is that the outer solution, to which the boundary-layer approximation
should be matched, exists over both a longer timescale and a longer length-scale.

The “time-averaged” interpretation of the outer solution is further motivated by the findings,
in [19], that the far-field enthalpy value in the boundary-layer approximation may be computed
from time-averaging the surface heat fluxes and that departure of the boundary-layer transient
from this far-field enthalpy value remains bounded.

Matching between the boundary-layer approximation and the slow-time solution to (12)–
(16) is not considered, although the framework of a matched asymptotic approximation is
believed to be the correct one within which to view (12)–(16). As intimated in Section 1, our
reason for considering (12)–(16) is for practical application. The boundary-layer approxima-
tion in [19] and the slow-time equations (12)–(16) are valid over distinctly different timescales
and length-scales, which are relevant to different thermo-physical processes within the billet.
Matching would involve the use of an intermediate timescale and length-scale. Unless this
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intermediate timescale and/or length-scale is relevant to a thermo-physical process within
the billet, which is both of interest and cannot be adequately studied with either of the other
two approximations, then there is no reason to undertake the matching process. A second
objection to matching is that, although the spatial limits of the boundary-layer approximation
are reasonably well defined in the direction normal to the surface, they are less well defined
in the direction tangential to the surface.

A last, but essential, comment is that, if the end aim of the analysis is to be a uniformly valid
asymptotic approximation to H , then matching is absolutely necessary. The surface enthalpy
of the slow-time equations satisfies (13). The far-field enthalpy in the boundary-layer equations
is found from the solution H of

0 = Bgas(T (H)� T gas) + Pe vxP (H �Hspray): (17)

These two values are clearly different and matching is therefore necessary. The physical
interpretation is that, on the fast timescale, the OS(1) enthalpy gradients deep within the billet
are unable to affect heat flow close to the surface, where the short boundary-layer length-scale
is relevant. At surface points where there is considerable deposition, (e.g. near the centre of
the billet). the far-field boundary-layer enthalpy will be greater than the time-averaged surface
enthalpy, (since (17) neglects conduction into the billet). At other surface points where there
is much less deposition (e.g. approaching the sides of the billet), the far-field boundary-
layer enthalpy will be smaller than the time-averaged surface enthalpy. Therefore, it is likely
that significant heat flow will occur in the matching layer, (see Figure 2b). In the extreme
case of zero deposition, (17) predicts that the far-field boundary-layer enthalpy is that which
corresponds to the gas temperature, which is wrong. From this short discussion, it is apparent
that both approximations, when used alone, must be used with appropriate caution.

3. Computational algorithm

To make progress in analysing (12)–(16), a computational solution is needed. Both (12) and the
boundary conditions (13) and (15) are nonlinear. The problem is hard computationally, because
the billet surface must be tracked as well as the solidus isotherm, i.e. this is a moving-boundary
problem within a moving boundary. Billet shapes are not always simple, (e.g. exact cylinders),
even when they are axisymmetric. Considerable effort is devoted towards controlling the shape
of spray-formed billets, (see e.g. [25]), but significant variations from a constant radius and
a steady billet crown shape may still occur during production. Therefore, although simpler
model problems could be investigated, (e.g. linear heat conduction, D = constant, and/or
one-dimensional growth), these are of limited practical value. What is required here is a
computational method which, (apart from the usual requirements of numerical stability), is
robust enough to be able to cope with the real range of billet geometries.

With current computational capabilities, timing is not necessarily critical. However, for the
purpose of undertaking parametric model studies one wants to wait only minutes, not hours. A
reasonably fast numerical algorithm also opens up exciting new possibilities, such as coupling
computations with a real-time (model-based) solidification-control algorithm. Lastly, it should
be mentioned that excessive accuracy, in terms of a very high order of approximation and/or
a very fine computational grid, will not be needed. Exceptionally high resolution would only
be required if large temperature fluctuations are likely over very small length-scales in the
slow-time problem (12)–(16). Due to the scaling used, all variables are expected to be O(1)
initially. Since D(H) > 0 is bounded, the problem remains parabolic (i.e. dissipative) and
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because there are no internal heat sources, it is reasonable to suppose that the solutions remain
(at least) as regular as the initial conditions. Large rapid transient thermal gradients will exist
only in the boundary-layer model [19].

3.1. ALGORITHM DESCRIPTION

Motivated by the above discussion, the computation was carried out using a four-stage two-
level, fully implicit finite-difference method. A fixed, uniformly regular grid, (spacing �r =
�z), was used in both r- and z-directions. In the final stage of the algorithm, at each time
step � = �n, an iterative solution is found to the standard 6-point (two time level) fully
implicit finite-difference approximation to (12). Stability and convergence of this method for
a nonlinear parabolic equation such as (12), on an arbitrary smooth region, and with mixed
boundary conditions, has been considered by Samarskii [26]. A generalisation to the case of
an expanding domain has not been found in the literature. Due to the nonlinearity, there is a
practical time step constraint of form �� � 1

2 �z, except in periods of rapid surface growth.
Local truncation errors are O(�z) +O(��n) near the billet surface and O(�z2) +O(��n)
internally. This algorithm is described in considerable detail in chapter 7 of [20]; here only the
significant points are mentioned. Issues relating to choice of this method are also discussed in
[20].

Compared with an explicit method, where the time step restriction would be ��n �
1
4 �z

2, the implicit algorithm requires approximately (2 + k) times as many floating-point
multiplications per meshpoint on each time step, where k is the number of iterations of the
final stage of the algorithm. Supposing the model is integrated over the interval � 2 [0; �end],
the total CPU cost for the explicit method is / �2

end=�z
4 and that for the implicit algorithm

is / �2
end=�z

3. For �z < 2=(2 + k) the implicit algorithm should be more efficient.

3.2. MODEL CLOSURE

Billet spray-forming is a longitudinal process, consisting of many complex interdependent
sub-processes. To complete the model, at least for the purpose of computation, some of these
sub-processesmust also be modelled in order to give the parameters in the boundary conditions
(13) and (15). For computing the billet-surface normal velocity, the model developed in [20,
21] was used. In [23], this model has been shown to reliably produce realistic results when
simulating real billet growth. The other boundary-condition parameters are provided through
the following sub-models.

3.2.1. Treatment of the collector

The collector typically consists of a cylindrical plate of material, which is securely fastened
to the rotating hydraulic ram beneath it. The material is assumed to have constant density,
specific heat capacity and thermal conductivity denoted by �̂collector; ĉcollector and K̂collector ,
respectively. The collector radius and thickness are denoted by R̂collector and Ẑcollector . It is
assumed that the collector is initially at a uniform temperature, T̂ 0

collector .
The collector plate is thin and thermal contact between the base of the plate and the

hydraulic ram is often poor (although it could be improved/controlled). Therefore, the sides
and bottom of the collector are modelled as insulated. The collector will act as a heat sink for
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the spray that is initially deposited and should then diminish in importance as the billet grows
larger, and as it itself heats up.

Temperature profiles within the collector are computed using a completely standard 6-point
explicit, centrally differenced finite-difference scheme, with a coarser spatial mesh than that
which is used for the billet heat-flow computation. If necessary, time is advanced from �n
to �n+1 over a number of smaller substeps when computing the collector temperature, in
order to preserve the stability of the explicit scheme. For computations carried out in this
paper, it is assumed that the collector is made from an aluminium alloy with thermo-physical
parameters �̂collector = 2560 kg/m3, ĉcollector = 1300 J/kg/C, K̂collector = 180 W/m/C. An initial
temperature T̂ 0

collector = 25 C, and dimensions R̂collector = :15 m and Ẑcollector = 0:3 m are also
assumed. The thermal contact between the billet base and collector plate is assumed imperfect
due to the rapid cooling and shrinkage of the first layers of spray depositing on the collector
(this is easily verified by observation at the end of a process run); a value for ĥcollector in the
range 1000� 2000 W/m2=C is thought to be reasonable.2

3.2.2. Hspray, T gas, and Bgas

Derivation of fully accurate submodels to describe Hspray, T gas, and Bgas is beyond the scope
of this paper and there is also a lack of reliable measurements available. The assumption of
constant Bgas, T gas, and Hspray across the billet surface, which was made in [19] to study the
boundary-layer approximation, cannot however be justifiably made when the entire billet is
considered.

Most data is available concerning Hspray. For given atomising gas pressures and metal
mass-flow rates, the spray-fraction liquid, fl;spray, is known to decrease with distance from
the atomiser; (for measurements and computations see e.g. [4, 5, 6, 7, 9, 10, 11, 12, 13, 27,
28]). However, the exact spray-function liquid at a given distance from the atomiser nozzle
will also depend on the local droplet size distribution and gas velocity, as well as on other
process parameters, such as the melt superheat. More importantly, these results can also be
alloy-dependent.

A very simplified model which roughly approximates the spray-fraction liquid variation
with flight distance, as computed in [11] for representative process parameters and for a similar
alloy composition to that considered here, is given by

fl;spray(ẑd) = 1� ẑd; (18)

where ẑd is the dimensional distance (in metres) from the atomiser nozzle. At typical flight
distances, (ẑd � 0�5 m), the depositing spray is around 50% liquid and is cooling at approxi-
mately 1% liquid fraction per centimeter. This linear model is used to compute Hspray at the
billet surface for all results presented.

Gas temperatures� 100 C are measured downstream from the billet, well after exiting the
spray chamber. Within the spray-chamber temperatures will be significantly higher and in the
absence of further data, a constant gas temperature

T̂gas = 200 C; (19)

close to the billet surface is assumed.
The heat-transfer coefficient ĥgas, is thought to decrease smoothly from a maximum value

of approximately 1000 W/m2C, directly under the spray on the billet crown, to a value in the
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range 200�300 W/m2C along the sides of the billet.3 The transition from billet crown to billet
sides typically occurs geometrically within a distance � r̂s (denoting the radius of the metal
spray) above the lower spray boundary, which is the line below which no spray lands, (see
[20, 21]). The assumed variation in the gas heat-transfer coefficient is modelled very simply
with a two parameter model. Heat-transfer coefficients ĥgas;1 and ĥgas;2 give the heat-transfer
coefficients on the crown and sides of the billet, respectively. The transition between ĥgas;1

and ĥgas;2 is assumed to occur only within a distance r̂s above the lower spray boundary. The
variation is modelled as being proportional to the decay in the time-averaged spray mass-flux
distribution, from its value a height r̂s above the lower spray boundary, to zero at the lower
spray boundary.

3.2.3. Aluminium alloys

A variety of aluminium alloys are used to manufacture spray-formed billets. The purpose of
this paper is, however, not to explore intra-alloy variations. Therefore, the same aluminium
alloy will be used as has been used in the first part of this paper [19]. To aid the reader,
the thermophysical data for this alloy are reproduced in Table I at the end of the paper. The
nonlinear functions T (H) and D(H) are shown in Figure 2 of [19].

3.2.4. Dimensionless model parameters

For a typical R̂ = 150 mm radius billet and the aluminium alloy of Table I, the follow-
ing dimensionless model parameters are considered realistic and are used for all following
computations (unless otherwise stated).

T gas = �3�755; Bgas;1 = 0�8; Bgas;2 = 0�25;

rcollector = 1�0; zcollector = 0�2; T
0
collector = �5�67;

Bcollector = 1�6; Pe = 1�8:

The spray cone radius rs = 0 �5 and the spray oscillates between angles [a1; a2] = [28 �5�; 41 �
5�] according the scanner angle function shown in Figure 2 of reference [23].

3.2.5. Initial conditions

Setting of initial conditions at �0 = 0, when there is no spray-formed deposit, is obviously
problematic, but also is necessary for computation to proceed. Within the computational
algorithm, in order that a discretised form of (13) may be satisfied on the billet top surface, it
is necessary to prescribe initial values on at least two gridlines internal to the billet. Therefore,
initial conditions for the numerical solution are set by assuming an initially uniform deposit
of thickness 2�z and radius rc on top of the collector plate. The collector plate initial vertical
displacement below the atomiser is increased by a distance 2�x, so as to leave the billet-
growth computation completely unaffected. Prescription of initial conditions in this way
clearly introduces an initial error of O(�z) into the solution.

The initial vertical enthalpy gradient through the initial deposit is assumed to be linear, a
discretised form of (13) is satisfied at the top surface and it is assumed that the mean enthalpy
of the initial layer Hi is given by the heat fluxes through the top surface and to the collector,
i.e.

0 = Bcollector[T (Hi)� T collector] +Bgas[T (Hi)� T gas] + Pe v[Hi �Hspray]: (20)
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Figure 3. Test billet computation, isotherms plotted at: a) � = 0�5, b) � = 0�2, c) � = 1�5, d) � = 2�0, e) � = 2�5,
f) � = 3�0, g) � = 3�5, h) � = 4�0.

3.3. TEST PROBLEM

In order to examine the performance of the algorithm, a challenging test problem is considered.
During a production run, shape control is affected by variation of the metal mass flow rate
through the atomiser _m(�), and the withdrawal speed of the collector vertically downwards,
u(�). A properly robust algorithm must be able to cope with the following.
1. Sharp and significant changes in both _m(�) and u(�) during the process run.
2. Wide spatio-temporal variations in surface velocity, (=) heat inflow).
3. Significant spatio-temporal variations in the other boundary conditions.
4. Billet growth at a range of different angles to the computational gridlines.
5. Challenging billet geometries.

For these reasons, the heat flow has been computed within the billet shown in Figure 3a. The
different surfaces in Figure 3a show the surface of the (axisymmetric) billet plotted at time
intervals �� = 0 �1, throughout a process run of total length �end = 4. The step changes in
_m(�) and u(�) which have produced this strange billet are shown in Figure 3b.

A billet shape such as that in Figure 3a would require much wasteful machining to achieve
a cylindrical shape suitable for extrusion and would almost certainly be rejected by a produc-
tion quality control following micro-structural analysis. A model capable of computing the
isotherms within such a billet, during formation, is thus of great value in providing insight
into the real causes of production failure.

To compute the heat flow, a mesh spacing �r = �z = 1=70 has been used.4 Figure
4 shows the isotherms within cross-sections of the axisymmetric billet, computed with the
algorithm described. Figures 4a–h show the isotherms at intervals �� = �5 throughout the
modelled run. The solidus isotherm is marked with a fine dashed line and temperatures above
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the solidus temperature are marked with a solid line at intervals corresponding to a 1% change
in the alloy liquid fraction. Below the solidus temperature, isotherms are marked with a coarse
dashed line at temperature intervals which are equivalent to 20% of the freezing range of the
alloy, (the freezing range �T̂ = T̂l � T̂s = 91�8 C in this case). The same graphical notation
is used throughout the paper.

Significant temperature transients can be observed in Figure 4. Throughout the process
run the billet varies between being nearly fully solid, (Figures 4c, d, g and h), and containing
significant volumes of semi-solid alloy (Figures 4a, b, e and f). In the semi-solid regions, the
field equation (12) is extremely nonlinear. The isotherms in Figure 4 are smooth throughout
the run, even close to the billet surface, thus demonstrating the capabilities of the algorithm
in using a fixed, square mesh to cope with a boundary that is both curved and moving. It is
clear that the nonlinearity causes no difficulties for the algorithm.

4. Numerical results

The aim of this section is to use the computational algorithm of Section 3 to investigate some
practically relevant process situations.

4.1. START-UP STRATEGIES

When well controlled, for the major part of a production run, variations in the billet radius are
minimal and the billet crown maintains a reasonably steady shape, when viewed in a frame
of reference fixed relative to the atomiser height. This mode of production is highly desirable,
(see e.g. discussions in [20, 21, 22, 25]). However, at the start of the production run, there
is nearly always a period of significant unsteady transient growth. Billet growth in the initial
phase of production runs has been considered in [23], where a number of different generic
start-up strategies for controlling the initial growth period were examined. In [23], only billet
growth was considered. Here, three representative strategies are reconsidered from the point
of view of how the thermal behaviour of the initial deposit is affected by the different surface
movements.

For a typical 0�15 m radius production billet and for Peclet numbers Pe in the range 1�4 –
1�8, the mean billet withdrawal speed Û0 will be in the approximate range 0�5 – 0�65 mm/s
and the slow timescale is about 230–300 s long. The start-up phase of the run is therefore
assumed to be approximately equal to the time period � 2 [0; 1], (i.e. the first 4 – 5 minutes
of a normal production run).

4.1.1. Delayed billet withdrawal

Here the collector height is kept stationary for a given initial delay interval, while the plant
operator observes the development of a suitable crown profile on a video monitor. Typically,
the centre of the billet grows upwards first into a “hat” shape and then, when the billet radius
is observed to “fill out” a bit more, the operator commences billet/collector withdrawal. Here
the mass flow rate is assumed constant, _m(�) = 1, and the withdrawal velocity u(�) is given
by

u(�) =

�
0; 0 � � � 1;
1; 1 < �.

(21)
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Figure 4. Delayed billet withdrawal: a) � = 0�1, b) � = 0�2, c) � = 0�4, d) � = 0�6, e) � = 0�8.

The collector is initially positioned a height zn = 3 below the atomiser nozzle. These condi-
tions are exactly as for the billet growth modelled in reference [23].

Results are shown in Figure 5 for times � = 0 �1; 0 �2; 0 �4; 0 �6; 0 �8 It can be seen that
the billet surface grows initially very rapidly in the centre, until about � = 0 �4 (compare
Figures 5a and b with Figure 5c). This is followed by a period of slower growth of the billet
centre, as the billet edge grows up into the spray. The initial growth surge results in fraction
liquids of over 20% near the billet centre, whereas the very outside of the billet (where little
spray is deposited) is chilled rapidly and effectively by the collector. In these first stages of
growth, thermal gradients tangential to the surface, between the centre and edge of the billet,
are � 1300 C/m.
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Figure 5. Delayed billet withdrawal: a) � = 0�1, b) � = 0�2, c) � = 0�4, d) � = 0�6, e) � = 0�8.

A number of things should be said about these results. Firstly, they are believed to be quite
realistic. When initial billet growth is rapid and results in a significant “hat-shaped” deposit,
(as in Figures 5a and b), the billet centre is observed to glow brightly on the video monitor and
pyrometer readings can also register the higher surface temperatures. Maintenance of such a
large pool of semi-solid alloy over significant time periods will allow macro-segregation to
occur. This is, however, probably irrelevant here, since the large thermal gradients are likely to
lead to shrinkage defects which will make the billet unsaleable. Usually, due to the incremental
nature of spray-formation, shrinkage defects are minimal, seriously affecting only the first few
centimeters of the billet next to the collector. However, on occasion, “hot tears” are found in
the base of the billet. These are large tears in the billet, often with a circumferential aspect. It
is postulated that the likely cause of these defects is the development of thermal stresses, due
to significant non-uniform thermal gradients, as shown in Figure 5. A final point of interest is



Solidification of aluminium spray-formed billets 425

Figure 6. Immediate billet withdrawal: a) � = 0�1, b) � = 0�2, c) � = 0�4, d) � = 0�6, e) � = 0�8.

that the thermal gradients are not monotone within the billet, (see the looped isotherm near
the tip of the billet in Figures 5b and 5c, and note in Figure 5c that the isotherm near the
billet tip is a 5% liquid-fraction isotherm; the maximum temperature is within the billet). This
indicates the possibility of solute-trapping on a macroscopic scale.

4.1.2. Immediate billet withdrawal

Rapid vertical growth of the billet centre might intuitively be thought to result from delaying
the withdrawal of the billet, i.e. moving the billet in the direction opposite to the surface
growth should reduce the surface growth. This intuition is, however, completely wrong.

With the same parameters as above, slow-time heat flow has been again computed for
the initial phase of billet growth, but now with constant withdrawal velocity, u(�) = 1. The
results are shown in Figure 6, which can be compared directly with Figure 5. It is seen that
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for � 2 [0; 0:2] billet growth and solidification is very similar to that in Figure 5, with large
thermal gradients developing and significant liquid fractions persisting near the billet centre.
The reason for this counter-intuitive result is that the effect of withdrawing the billet earlier
is to maintain the billet top surface at a position, relative to the atomiser height, where the
density of the spray mass flux is greater. Therefore, the vertical growth of the billet centre is
actually faster here than in Section 4.1.1. Further away from the billet axis of rotation, the
withdrawal motion does remove the billet from the region where the spray mass-flux density
is large and surface growth is consequently retarded. At the later stages of this initial period,
the immediately withdrawn billet is rather tall and thin, whereas the delayed billet is shorter,
but does fill out to a radius rb � 1. Note that the same mass has been deposited in both cases.

In the final stages of the start-up phase, the vertical growth of the centre is reduced, but is
still sustained relative to the edges of the billet. Consequently, the high-fraction liquid in the
billet is sustained longer than in the delayed-withdrawal billet. Again non-monotone thermal
gradients are found in the billet, (Figures 6c and d). As in Section 4.1.1, these are caused
by an initial acceleration of the billet centre, followed by a deceleration as the spray density
reduces.

4.1.3. Optimal collector positioning

Without even considering heat flow, the billets resulting from the start-up strategies in Sections
4.1.1 and 4.1.2 are not acceptable from the point of view of the amount of billet which must
be machined, in order to produce a perfect cylinder for post-processing. The start-up strategy
proposed in [23] for controlling the initial phase was to optimally position the collector
and withdraw the billet immediately. Optimal positioning, from a dynamic point of view, is
achieved when zn � 2 1

3 .
Computations for this case are shown in Figure 7. The remaining parameters are exactly

as in Section 4.1.2. This start-up strategy is found to produce much more uniform heat fluxes
within the billet than in Figures 5 and 6. To begin with, the spray is effectively chilled by
the collector, even at the centre. In contrast to the other start-up strategies, the billet crown
shape changes only slowly and reasonably uniformly across the billet radius. Centre-to-edge
thermal gradients peak here at � 600 C/m, (i.e. about half as large as in Sections 4.1.1 and
4.1.2). The thermal gradients also remain monotone. Peak fraction liquids of little over 2%
are found in the latter stages of the start-up phase (see Figure 7e).

It is noted here that the higher initial positioning of the collector means that the spray
arriving at the billet surface is actually considerably hotter than in Sections 4.1.1 and 4.1.2,
(i.e. containing about 10% more fraction liquid). In spite of this, the billet is much colder.
This demonstrates clearly that it is the billet growth which controls the heat fluxes in Sections
4.1.1 and 4.1.2.

4.2. STEADY-STATE HEAT FLOW

The dynamics of billet growth on the slow timescale are well understood: i.e. mathematically
[20, 21], computationally [22, 23], and from the shape-control point of view [25]. The domi-
nating feature of billet-growth dynamics is the existence of a stable steady-state shape, which
the top part of the billet grows towards. The dominant effect of billet growth in determining the
thermal behaviour, shown clearly by the results in Section 4.1, leads one to question whether
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Figure 7. Initial collector position: zn = 2 1
3 : a) � = 0�1, b) � = 0�2, c) � = 0�4, d) � = 0�6, e) � = 0�8.

the thermal behaviour within the billet becomes steady in some sense when the geometric
behaviour of the billet also becomes steady.

To investigate this, the computations in Section 4.1 have been continued for � 2 [0; 3]
and are shown in Figures 8, 9 and 10, corresponding to Sections 4.1.1, 4.1.2 and 4.1.3,
respectively. Note that for � � 1; _m(�) = 1 and u(�) = 1 in all three computations. The
thermal and geometric conditions at � = 1 are quite different in each computation, as seen in
Figures 8a, 9a and 10a. However, by time � = 3, the crown of the billet has grown to a similar
shape in each computation (see Figures 8c, 9c and 10c). Additionally, it can be seen that the
isotherms in the very top of the billet crown become progressively more similar. The heat flow
in the lower part of the billets, however, remains quite different, (as does the geometry). A
continuation of the computations still further shows that the enthalpy field in the billet crown
converges to an enthalpy field which appears to remain steady, within a spatial coordinate
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Figure 8. Delayed billet withdrawal: a) � = 1�0, b) � = 2�0, c) � = 3�0.

Figure 9. Immediate billet withdrawal: a) � = 1�0, b) � = 2�0, c) � = 3�0.
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Figure 10. Initial collector position, zn = 2 1
3 : a) � = 1�0, b) � = 2�0, c) � = 3�0.

system which is fixed relative to the atomiser height. Only the computations for the optimally
positioned collector are shown (see Figure 11).

The importance of steady-state heat flow in the billet crown is as follows. Suppose two
horizontal slices are taken through the billet, at fixed heights za and zb above the collector
plate. The alloy which is at the same radial distance r in each of the two slices will experience
the same thermal history, apart from a time delay, and can therefore be expected to have similar
microstructural properties, (i.e. steady-state heat flow implies microstructural homogeneity in
the z-direction for the end product). The same will not be true in the radial direction, since
there is always a radial enthalpy gradient. However, the thermal histories at different radial
positions within the same horizontal slice will also be quite similar, (e.g. rates of cooling).

Existence of steady-state enthalpy fields is not hard to understand heuristically. Moving
to a coordinate system which is fixed at a set vertical distance below the atomiser height,
Equation (12) becomes

@H

@�
= u(�)

@H

@z1
+

1
Pe
r:[D(H)rH]; x1 2 
1(�); (22)

where
1(�) denotes the domain of the billet in this “billet-crown” coordinate system, denoted
by x1. As the geometry becomes steady, 
1(�) becomes a constant shaped domain, at least
above say z1 = z�. The boundary conditions (13) and (14) remain unchanged by the trans-
formation. The surface heat fluxes in (13) depend primarily on position of the surface relative
to the atomiser, and can be expected to become steady with 
1(�). Therefore, it is only the
heat flux across z1 = z� which is important. If this heat flux becomes steady then, due to the
dissipative nature of (22), one expects that the solution of (22) will converge to a steady state.
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Figure 11. Steady-state heat flow in the billet crown: a) � = 4�0, b) � = 5�0, c) � = 6�0.

Note that if the geometry below z1 = z� is different between two billets, (e.g. due to
different initial growth or to the use of collectors of different sizes, then the ratio of billet
surface area to billet volume in the lower parts will be different and one would expect a
different heat flux at z1 = z�. In fact, the existence of the collector as an initial geometry
probably means that the heat flux at z1 = z� never becomes properly steady, except in the
limit of an infinitely long billet. From a practical point of view, the effect of the collector
diminishes quite rapidly at the billet grows and the enthalpy field may as well be considered
to approach a steady state.
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Figure 12. Steady-state heat flow. Pe = 1�4: a) � = 1�0, b) � = 2�0, c) � = 3�0, d) � = 4�0, e) � = 5�0, f)
� = 6�0.

4.3. CHANGING Pe

For the alloy considered here, the Peclet number during plant operation is usually in the range
Pe = 1�4 – 1�8, (see [19], Figure 3). The Peclet number can be thought of intuitively as the
ratio of timescales for conduction and for billet growth. From this perspective, decreasing Pe
might be thought of in terms of allowing more time for the billet to solidify. Consequently,
one expects that billets produced at lower values of Pe will be colder. This is indeed found to
be the case.

Figure 12 shows the heat flow inside a billet produced for Pe = 1�4. The initial conditions
and subsequent growth are exactly as for the optimally positioned billet in Figures 7, 10 and
11. The computed results show again that the heat flow in the billet crown converges to a
(pseudo) steady state quite rapidly, but the computed temperatures within the billet are colder
throughout, than for the Pe = 1�8 computation.
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This is easily explained in terms of the transformed equation (22). A decrease in Pe is seen
to lower the heat inflow into the billet, through the boundary condition (13), whilst increasing
the effectiveness of conduction relative to convection in (22). Since the geometry is unchanged
with Pe one is effectively just determining the heat fluxes at the lower boundary z1 = z� of the
steady-state crown domain. To appreciate this, note that, outside of the spray, the boundary
conditions (13)–(15) will be unaffected by a change in Pe. Consequently, the surface heat
fluxes in the lower part of the billet, both out through the surface and into the collector, should
be unaffected by a change in Pe. Consequently, the surface heat fluxes in the lower part of the
billet, both out through the surface and into the collector, should be unaffected by a change in
Pe. Therefore, it is expected that the heat flux out of the steady billet crown and into the stem
of the billet should also be relatively unaffected by a change in Pe. This intuition is confirmed
by the very similar thermal gradients observed down the length of the billets in both Figures
11a–c and Figures 12d–f.

4.4. STEADY SHAPE AND UNSTEADY HEAT FLOW

Although geometric stability is often achieved in controlled production runs, this does not
necessarily imply that _m(�) and u(�) are well controlled. In fact, considerable variations in
both _m(�) and u(�) do occur in real production runs (see various examples in [25]). The
problems in maintaining a steady _m(�) and u(�) usually stem from control of _m(�), which is
difficult for a number of technical reasons. The variations in u(�) then follow from an attempt
to keep the ratio u(�)= _m(�) approximately constant (see [20, 21, 23, 25]). As a simulated
example of this type of process condition, an in-phase�25% step variation in _m(�) and u(�)
are a real process feature and this level of variation is quite realistic. Since the variation is
in-phase, the ratio u(�)= _m(�) = 1 throughout the simulated process run. This implies that
the billet crown geometry should remain steady, relative to billet-crown coordinates x1.

The computed billet cross-sectional isotherms are shown in Figures 13a–h and the functions
_m(�) andu(�) are shown in Figure 13i. The billet crown does indeed maintain the same steady-

state shape as previously. Note also that, due to the way in which the functions _m(�) and u(�)
have been chosen, at the times � = 1; 2; 3; 4, the billet surface is in exactly the same position
as it is at these same times in the earlier computations of Sections 4.2 and 4.3, (i.e. the same
amount of mass has been deposited). Since the surface position relative to the atomiser is also
maintained, the total heat inflow from the spray at these times is also identical with the earlier
computations. Therefore, the effects seen in Figures 13a–h are only the result of the variation
in _m(�) and u(�).

In Figures 13a–h one can observe a considerable thermal variation between periods in
which the billet is hot or cold. Steady geometric behaviour does not imply steady thermal
behaviour.

The physical explanation for the large changes in alloy liquid fraction, (e.g. see Figure
13e and Figure 13f) is as follows. Firstly, note that the geometry remains steady in a frame
of reference which is fixed to the atomiser height. During time periods when u(�) and _m(�)
are high (see Figure 13i), the billet is being withdrawn away from the atomiser relatively fast,
more mass flows through the atomiser and deposits on the billet surface. Since the submodels
which describe gas cooling effects are unaffected, the net effect is the deposition of more hot
spray on the billet surface than during time periods when u(�) and _m(�) are low, (i.e. the
billet heats up). Although, over the total length of the modelled run, the total heat inflow from
the spray is identical with that in the earlier steady-state computations, there is a significant
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Figure 13. Steady crown geometry, unsteady heat flow, Pe = 1�8: a) � = 0�5, b) � = 1�0, c) � = 1�5, d) � = 2�0,
e) � = 2�5, f) � = 3�0, g) � = 3�5, h) � = 4�0, i) _m(�) and u(�).

temporal variation in exactly when the spray is deposited. As in Section 4.1, billet growth
rates have a critical effect on billet temperature.

After the start-up phase of the computation, thermal transients are confined mostly to the
billet-crown region. One interpretation of this variation is that the heat flow in the billet crown
converges relatively quickly to a new thermal (pseudo) steady state, following step changes in
_m(�) and u(�). If the heat fluxes further down the stem of the billet remain largely unaffected

by the step change, (as seems reasonable), then the (pseudo) steady problem in the billet crown
is defined by

0 = u(�)
@H

@z1
+

1
Pe
r:[D(H)rH]; x1 2 
1; (23)
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and the boundary condition (13) can be written as

�D(H)
@H

@n
= Bgas(T (H)� T gas) + u(�)Pe vn(x1)(H �Hspray); x1 2 @
1; (24)

where vn(x1) remains constant with � (since the surface geometry is steady), and is defined
through vxP

= vn(x1)u(�). In this form it is clear that the step change in u(�) is in a
sense equivalent to a change in Pe for the (pseudo) steady problem, i.e. (23) and (24) are
parameterized solely by u(�) Pe. Therefore, the billet-crown heat fluxes shown in Figures 13g
and 13h should be approximately the same as the steady-state-crown heat flow which would
be observed if the computations of Section 4.3 were repeated for Pe = 1�35 and Pe = 2�25,
(i.e. in the intervals of fast billet growth). For Pe = 1 �35 the analogous (i.e. dimensional),
billet surface growth is slower. The analogy is still correct, but the heat flow in Figure 13g
has not had enough time to converge fully to the steady-state-crown heat flow for Pr = 1�35.
This is confirmed by lengthening the time interval between step jumps in _m(�) and u(�), in
Figure 13i, and repeating the computation over a longer total time interval.

5. Conclusions

This paper has considered the problem of heat flow and solidification within an axisymmetric
spray-formed billet, growing on a slow timescale. the problem consists of mathematically
solving a nonlinear parabolic partial differential equation in two spatial dimensions, within an
irregularly shaped expanding domain. A simple, but effective, computational algorithm for
solving this problem has been developed, implemented and used to solve representative test
problems.

In Section 4 the computational algorithm has been applied to the modelling of a number
of realistic process situations. The main practical contributions of this paper are as follows.
1. If the billet-crown shape is kept steady and both _m(�) and u(�) are maintained steady,

then a steady pattern of heat flow is likely to result (Section 4.2).
(a) This is essential for the production of billets of consistent quality.
(b) A smaller production Peclet number, Pe should result in a colder billet (all other

parameters remaining fixed; Section 4.3).
2. It has been demonstrated clearly, by means of examples that significant transient heat

flows can result from inadequately controlled billet growth.
(a) If the start-up phase of the production run is not well controlled, the initial thermal

transients, (see Sections 4.1.1 and 4.1.2), can persist for a significant proportion of
the production run, (see Figures 8 and 9).

(b) Maintenance of a steady crown shape alone is not sufficient to ensure that the heat
flow is steady (Section 4.4).

The relative importance of the start-up phase to the steady-state phase clearly depends
upon the length of billet being produced (equivalently, on �end). Current billets are grown to
lengths between 1 m and 2 m. Horizontal spray chambers, although presenting new engineering
problem, allow the growth of much longer billets. The results in Section 4.4 strongly suggest
that on-line “solidification control” of some form would be a practical necessity for such
a process. Additionally, direct solution of (pseudo) steady-state crown heat-flow problems
would appear to be sensible. This avoids both the problem of prescribing initial conditions
and that of the moving billet surface. The main difficulty here is in fixing the lower limit of
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the crown domain z1 = z� and in prescribing a practically relevant boundary condition at
z1 = z�.

Mathematical interest here is two-fold. Firstly, consideration of the slow-time equations
(12)–(15), together with the boundary-layer equations of [19] as separate elements of an
asymptotic approximation, is interesting. Secondly, as is illustrated well by the computational
results, the boundary condition (13) which couples the growth of the expanding domain to the
heat flow within the domain, can have a significant effect on the internal heat fluxes. Coupled
growth and solidification are inherent in many materials processing applications as well as in
other deposition/forming-type physical processes. It is felt that application-oriented studies
(such as this one) would benefit from a rigorous mathematical study of the generic problem,
which consists of a one-dimensional linear heat equation in an expanding interval, where the
interval growth influences the heat flow through a boundary condition of the type (13). This
is of course related to the Stefan problem.

Acknowledgements

This work was supported through a Teaching Company Associateship by Alcan International
Ltd., Banbury, U.K. and the Oxford Centre for Advanced Materials and Composites, Univer-
sity of Oxford, (Grant Reference Number GR/F/12006). The author would like to express his
thanks to Drs. Peter Alexander, Brian Cantor and Oliver Jacobs for their supervision during
the course of this research.

The author also gratefully acknowledges financial support during the writing of this paper
from the Austrian government, (Fonds zur Förderung der Wissenschaftlichen Forschung,
project number P09647-PHY), and from the Christian Doppler Society.

Appendix

Table I. Alloy thermophysical parameters

T̂s 541�C K̂s 151 W/m/�C
T̂l 631�8�C K̂l 80 W/m/�C
�̂ 2400 kg/m3 ĉ 1180 J/kg/�C
L̂ 317400 J/kg

Notes
1 The billet solidification timescale is usually found to be similar to that for billet growth, (see [19], Figure

3). This is not a coincidence. Billet growth rates are controlled so as not to exceed solidification rates. The billet
rotates rapidly during formation (� 102 rpm), and so must be reasonably solid.

2 Experimentally derived values for ĥcollector are in the range ĥcollector � 1000 � 5000 W/m2=C [9, 12].
Variation in the efficiency of thermal contact between different alloys and different process runs is quite likely.
Values ĥcollector � 103 W/m2=C do indicate very effective heat transfer between collector and billet base; the
exact value of ĥcollector will not be of much importance after a few seconds of billet growth. In strip spray-forming,
a more precise value for ĥcollector would be required.

3 Pyrometry is used during production, to give a measurement of average billet top surface temperature. Such
measurements indicate that, during successful production runs, the average billet top surface temperature is close
to the solidus temperature for many aluminum alloys. It is possible to enter the spray chamber after degassing, a
few minutes after the end of the production run, and make direct measurements of the billet-surface temperature. In
this way, an estimate of the temperature gradient existing down the length of the billet is made, (e.g. � 100 C/m).
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Billet growth rates are measured on-line [25] and reasonable estimates of Hspray are available (e.g. [11]). A
combination of all this information shows that the conduction term in (13) is typically much less than the heat
influx term on the top of the billet, where most of the spray is deposited. Therefore, (17) is likely to be approximately
satisfied on the billet top surface (with T � H � 0). This generates the estimate for ĥgas.

Note that direct experimental measurement of ĥgas or T̂gas) during production is nearly impossible. there is
considerable turbulent mixing of the atomising gas in the spray chamber, due to high recirculatory gas velocities
[8] and to rapid billet rotation. The spray chamber is sealed during production, allowing only non-intrusive
measurement methods. It is extremely difficult to find reliable correlations for ĥgas, since the geometry range of
validity of empirical correlations that are used for impinging jets in spray-cooling/drying applications, (e.g. [29]).
Surface roughness and curvature complicate the use of simpler correlations, (e.g. flow over a flat plate), as does
the 10 – 20% of the metal spray typically carried away in the gas stream.

4 The value �r = �z = 1=70 has been arrived at after some numerical experimentation. For mesh sizes
between �z = 1=30 and �z = 1=100 qualitative differences are only slight. Quantitative differences are largest
closer to the billet collector boundary, rather than close to the growing surface of the billet. As described in Section
3.2.5, there will be an error associated with the prescription of initial conditions, which is dependent on the mesh
size.
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